Biología del envejecimiento

Autores/as

  • María Isabel Barona Cabal Universidad del Valle

Palabras clave:

Envejecimiento, Biología Molecular

Resumen

El envejecimiento es un tema de interés multidisciplinario. Su etio-patogénesis se ha tratado de dilucidar desde hace muchos años, y por ende la manera de retardar su aparición y prevenir la manifestación de enfermedades degenerativas y, en ocasiones, mortales que se hacen más frecuentes a medida que el organismo se envejece.

Múltiples teorías se han desarrollado. En esta revisión se habla de algunas de ellas y de aspectos recientes relacionados con la Biología molecular del envejecimiento.

Biografía del autor/a

María Isabel Barona Cabal, Universidad del Valle

MD, Dermatóloga, Docente adjunto Sección de Dermatología

Universidad del Valle, Cali

Referencias bibliográficas

Balin AK, Allen RG, Mechanisms of Biologic Aging. En: The Aging Skin. Dermatologic Clinics. WB Saunders Co., Julio 1986, 437-358.

https://doi.org/10.1016/S0733-8635(18)30798-8

Rusting Rickil. Why do we age. Scientific American. 1992; 267(6): 130-141.

https://doi.org/10.1038/scientificamerican1292-130

Sohal RS. The rate of living theory: A contemporary interpretation. In: Collatz KG, Sohal RS (Eds): Comparative Biology of Insect Aging. Strategies and Mechanisms. Berlin, Springer-Verlag, 1986.

https://doi.org/10.1007/978-3-642-70853-4_3

Loeb J, Northrup JH. On the influence of food and temperature on the duration of life. J Biol Chem 1917; 32: 103-121.

Sohal RS, Allen RG. Relationship between metabolic rate, free radicals, differentiation and aging: An unified theory. In Woodhead AV, Blackett AD, Hollaender A (eds): The Molecular Biology of Aging. New York, Plenum Press. 1985.

https://doi.org/10.1007/978-1-4899-2218-2_4

Pearl R. The Rate of Living. New York, Knopf Press, 1928.

Harman D: Aging: A theory based on free radical radiation chemistry. J Gerontol. 1956; 11: 298-300.

https://doi.org/10.1093/geronj/11.3.298

Pryor WA. (ed): Free Radicals in Biology. Volume 1. New York, Academic Press, 1976.

https://doi.org/10.1016/B978-0-12-566501-8.50008-0

Southorn PA, Powis Garth DP. Free Radicals in Medicine I. Chemical Nature and Biological Reactions. Mayo Clin Proc 1988; 63: 381-389.

https://doi.org/10.1016/S0025-6196(12)64861-7

Hill HAO: Oxygen, oxidases and the essential trace metals. Philos Trans R Soc Lon (Biol) 1975; 294: 119-128.

https://doi.org/10.1098/rstb.1981.0093

Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527-605.

https://doi.org/10.1152/physrev.1979.59.3.527

Pryor WA: Free Radical Biology: xenobiotics, cancer and aging. Ann NY Acad Sci 1982; 393: 1-22.

https://doi.org/10.1111/j.1749-6632.1982.tb31228.x

Pryor WA. Oxy-radicals and related species, their formation lifetimes and reactions. Annu Rev Physiol 1986; 48: 657-667.

https://doi.org/10.1146/annurev.ph.48.030186.003301

Hutchitson F. The distance that a radical formed by ionizing radiation can diffuse in a yeast cell. Radiat. Res 1957; 7: 473-483.

https://doi.org/10.2307/3570395

Barber AA, Berheim F. Lipid peroxidation: its measurement, occurrence, and significance in animal tissues. Adv Gerentol Res 1967; 2: 355-403.

L. Guilly Y, Simon M, Lenoir P, et al: Long term culture of human adult liver cells: Morphological changes related to in vitro senescence and affect of donors age on growth potential. Gerontología 1973; 19: 303-313.

https://doi.org/10.1159/000211984

Cristofalo VS, Kritchevsky D: Cell size and nucleic acid content in the diploid human cell line W-38 during aging. Med Exp 1969; 19: 313-320.

https://doi.org/10.1159/000137216

Gutteridge JML, Richmond R, Halliwell B: Oxygen free radicals and lipid peroxidation. Inhibition by protein ceruloplasm. F.E.B.S. Lett. 1980; 112: 269-272.

https://doi.org/10.1016/0014-5793(80)80195-5

Cosowsky MS, Kelleher J, Walker BE et al: Intake and absorption of tocopherol. Ann NY Acad Sci, 1972; 203: 212.

https://doi.org/10.1111/j.1749-6632.1972.tb27877.x

Mooradian AD, Wong NCW. Molecular Biology of Aging Part II: A Synopsis of Current Research: JAGS 1991; 39: 717-723.

https://doi.org/10.1111/j.1532-5415.1991.tb03628.x

Stevens VJ. Vlassara H, Abati A, Cerami A: Nonenzymatic glycosilation of haemoglobin. J Biol Chem 1977; 252: 2998-3002.

Vassara H, Brownlee M, Cerami A: High affinity receptor-mediated uptake and degradation of glucose-modifed proteins. A potential mechaninsm for the removal of senescent molecules. Proc Natl Acad Sci USA. 1985; 82: 5588-5592.

https://doi.org/10.1073/pnas.82.17.5588

Brownlee M, Vlassara H, Cerami A. Nonenzumatic glycosilation products on collagen covalently trap low-density lipoprotein. Diabetes 1985; 34: 938-941.

https://doi.org/10.2337/diab.34.9.938

Monnier VM, Cerami A: Detection of nonenzymatic browning products in the human lens. Biochem Biophys Acta 1983; 760: 97-103.

https://doi.org/10.1016/0304-4165(83)90129-0

Scheneider SL, Kohn RR. Glycosilation of human collagen in aging and diabetes mellitus. J Clin Invest 1980; 66: 1179-1181

https://doi.org/10.1172/JCI109950

Master PM. Aminoacid racemization in structural proteins. In: Reff ME, Schneider EL Eds. Biological markers of aging. NIH Publication No. 82: 1982; 2221 pp 120-137.

Man EH, Sandhouse ME, Burg J, Fisher GH: Accumulation of D-aspartic acid with age in the human brain. Science, 1983; 220: 1407-1408.

https://doi.org/10.1126/science.6857259

Maters PM, Bada JL, Zigler J: Aspartic acid racemization in the human lens during aging and in cataract formation. Nature 1977; 268: 71-73.

https://doi.org/10.1038/268071a0

Richardson A, Birchenall-Sparks MC. Age related changes in protein synthesis. Rev Biol Res Aging 1983; 1: 255-273.

Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614-636.

https://doi.org/10.1016/0014-4827(65)90211-9

Praeger B. In vitro studies of aging. Dermatologic Clinics 1986; 4(3): 359-369.

https://doi.org/10.1016/S0733-8635(18)30799-X

Richardson A, Rutherford MS, Birchenall-Sparks MC et al. In: Sohal RS, Birnbaum LS, Cutler RG, Ed. Molecular Biology of aging. Gene stability and gene expression. New York: Raven Press 1980 pp 229.

Muller WEG, Agutter PS, Bernd A, et al. Role of postranscriptional events in aging: Consequences for gene expression in eukaryotic cells. In: M. Bergener, M. Ermini, HB Stahelin, eds. The 1984 Sandoz Lectures in Gerontology, Thresholds in Aging London: Academic Press, p 21, 1985.

Zhelabovskaya SM, Berdyshev GD. Composition, template activity and thermostability of the liver chromatin in rats of various age. Exp Gerontol 1972; 7: 313-320.

https://doi.org/10.1016/0531-5565(72)90039-3

Chetsanga CJ, Boyd V, Peterson L, Rushlow K. Single-stranded regions in DNA of old mice. Nature, 1975; 253: 130-131.

https://doi.org/10.1038/253130a0

Dean RG, Cutler RG, Abscence of significant age-dependent in crease of single-stranded DNA extracted from mouse liver nuclei. Exp Gerontol 1978; 13: 287-292.

https://doi.org/10.1016/0531-5565(78)90036-0

Ishikawa T, Sakurai J. Takayama S. In vivo studies on DNA repair and turnover with age. In: AD Woodhead, AD Blackett A Hollander, eds Molecular Biology of Aging. New York: Plenum Press, 297-313, 1984.

https://doi.org/10.1007/978-1-4899-2218-2_19

Linnane AW, Marzuki S, Ozawa T, and Tanaka M: Mitochondrial and DNA mutations as an important contributor to aging and degenerative diseases. Lancet, 1989; 1: 642-645.

https://doi.org/10.1016/S0140-6736(89)92145-4

Linnane AW, Baumer A, Maxwell RJ, Preston J, Zhang C, and Marzuki S: Mitochondrial gene mutation: The aging process and degenerative diseases. Biochem Int 1990; 22: 1067-1076.

Lumpkin CK, Mc Clung JK, Rereira-Smith OM, Smith JR. Existence of high abundance antiproliferative mRNAs in senescent human diploid fibroblasts. Science 1986; 232: 393-395.

https://doi.org/10.1126/science.2421407

Seshadri T, Campisi J. Repression of c-fos transcription and an altered generic program in senescent human fibroblast. Science 1990; 247: 205-209.

https://doi.org/10.1126/science.2104680

Stein GH, Beeson M, Gordon L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts Science 1990; 249: 666-669.

https://doi.org/10.1126/science.2166342

Maier JAM, Voulalas P, Roeder D, Maciag T. Extension of the life-span of human endothelial cells by an interleukin-1 a antisense oligomer. Science 1990; 249: 1570-1574.

https://doi.org/10.1126/science.2218499

Lockshin RA, Zakeri ZF. Programmed cell death: new thoughts and relevance to aging. J Gerontol 1990; 45: B135-B140.

https://doi.org/10.1093/geronj/45.5.B135

Sugawara O, Oshimura M, Koi M, et al. Inductgion of cellular senescence in immortalized cells by human chromosome 1 Science 1990; 247: 707-710.

https://doi.org/10.1126/science.2300822

Cómo citar

1.
Barona Cabal MI. Biología del envejecimiento. rev. asoc. colomb. dermatol. cir. dematol. [Internet]. 1 de febrero de 1994 [citado 3 de mayo de 2024];3(1):27-31. Disponible en: https://revista.asocolderma.org.co/index.php/asocolderma/article/view/951

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

1994-02-01

Cómo citar

1.
Barona Cabal MI. Biología del envejecimiento. rev. asoc. colomb. dermatol. cir. dematol. [Internet]. 1 de febrero de 1994 [citado 3 de mayo de 2024];3(1):27-31. Disponible en: https://revista.asocolderma.org.co/index.php/asocolderma/article/view/951

Número

Sección

Monografía
QR Code
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas