Vitiligo and its multifactorial autoimmune pathogenesis: facing the present and future

Authors

DOI:

https://doi.org/10.29176/2590843X.1748

Keywords:

Vitiligo, causality, autoimmunity, genetics, immunology, CD8-Positive T-Lymphocytes, T-Lymphocytes, Regulatory, IFN-γ, Janus Kinase 1, Janus Kinase 2, receptors, CXCR3, Janus Kinase Inhibitors

Abstract

Introduction: the pathogenesis of vitiligo is multifactorial; its diagnosis is mainly clinical and in selected cases is supported by histopathological studies that show the absence of melanocytes. The fundamental aspects of vitiligo are presented with emphasis on immunopathological events.

Materials and methods: narrative review. The Pubmed and Google Scholar search engines were used, with terms "vitiligo", "vitiligo aetiology", "immunopathogenesis of vitiligo", "vitiligo history". 45 articles were selected, including Colombian literature.

Results and discussion: vitiligo is a disease as old as humanity. Until today, a clear causal phenomenon has not been established, but rather a set of events related to its origin and perpetuation. Thanks to decades of research, some genetic and environmental influences on melanocytes have been revealed, which lead to a greater susceptibility to oxidative damage and a decrease in their intercellular adhesion. In response to different noxa, innate and adaptive immunity are activated, leading to destruction of the melanocyte mediated by cytotoxic CD8 + T cells. Participation of IFN-γ, the JAK/STAT pathway, especially JAK-1 and JAK-2, and the CXCR3B chemokine receptor are highlighted.

Conclusions: multiple biological phenomena converge in the etiopathogenesis of vitiligo; the result is the activation of CD8+ T lymphocytes, responsible for the destruction of melanocytes. The understanding of immunopathogenic pathways opens the door for the use of target therapies such as JAK inhibitors and CXCR3B inhibitors.

Author Biographies

Santiago Beuth Ruiz, Universidad de Antioquia; Medellín, Colombia.

Residente de primer año de Dermatología, Universidad de Antioquia; Medellín, Colombia.

Margarita Maria Velasquez-Lopera, Universidad de Antioquia, Medellín, Colombia

Médica Dermatóloga, Doctor en Ciencias Básicas Biomédicas, énfasis en Inmunología. Profesora Universidad de Antioquia, Medellín, Colombia.

References

Millington GWM, Levell NJ. Vitiligo: the historical curse of depigmentation. Int J Dermatol. 2007 Sep;46(9):990–5.

Rodríguez-Cerdeira C, Guzmán RA. El vitíligo, una enfermedad estigmática: un recorrido a través de su historia. :5.

Trujillo Correa MC, Gómez Vargas LM. Vitiligo. Revista Colombiana de Dermatología [Internet]. 2019 Dec 2;17(2). Available from: https://revista.asocolderma.org.co/index.php/asocolderma/article/view/155

Krüger C, Schallreuter KU. A review of the worldwide prevalence of vitiligo in children/adolescents and adults: Worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 2012 Oct;51(10):1206–12.

Yaghoobi R, Omidian M, Bagherani N. Vitiligo: A review of the published work: Vitiligo. J Dermatol. 2011 May;38(5):419–31.

Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive overview. J Am Acad Dermatol. 2011 Sep;65(3):473–91.

Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CCE, et al. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference: Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012 May;25(3):E1–13.

Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017 Jul;77(1):1–13.

Eleftheriadou V, Atkar R, Batchelor J, McDonald B, Novakovic L, Patel JV, et al. British Association of Dermatologists guidelines for the management of people with vitiligo 2021*. Br J Dermatol. 2022 Jan;186(1):18–29.

Mohammed GF. Highlights in pathogenesis of vitiligo. World J Clin Cases. 2015;3(3):221.

Bergqvist C, Ezzedine K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J Dermatol. 2021 Mar;48(3):252–70.

Wang Y, Li S, Li C. Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clin Rev Allergy Immunol. 2021 Dec;61(3):299–323.

Bergqvist C, Ezzedine K. Vitiligo: A Review. Dermatology. 2020;236(6):571–92.

Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, et al. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci. Front Genet [Internet]. 2016 Feb 1 [cited 2022 Aug 8];7. Available from: http://journal.frontiersin.org/article/10.3389/fgene.2016.00003

Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, et al. Variant of TYR and Autoimmunity Susceptibility Loci in Generalized Vitiligo. N Engl J Med. 2010 May 6;362(18):1686–97.

Marchioro HZ, Silva de Castro CC, Fava VM, Sakiyama PH, Dellatorre G, Miot HA. Update on the pathogenesis of vitiligo. An Bras Dermatol. 2022 Jul;97(4):478–90.

Malhotra N, Dytoc M. The Pathogenesis of Vitiligo. J Cutan Med Surg. 2013 May;17(3):153–72.

Spritz R, Andersen G. Genetics of Vitiligo. Dermatol Clin. 2017 Apr;35(2):245–55.

Sandru F, Carsote M, Albu SE, Dumitrascu MC, Valea A. Vitiligo and chronic autoimmune thyroiditis. J Med Life. 2021;14(2):127–30.

Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as Instigators and Victims of Oxidative Stress. J Invest Dermatol. 2014 Jun;134(6):1512–8.

Mosenson JA, Zloza A, Klarquist J, Barfuss AJ, Guevara-Patino JA, Le Poole IC. HSP70I IS A CRITICAL COMPONENT OF THE IMMUNE RESPONSE LEADING TO VITILIGO. Pigment Cell Melanoma Res. 2012 Jan;25(1):88–98.

Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. Vitiligo. The Lancet. 2015 Jul;386(9988):74–84.

Spencer JD, Gibbons NCJ, Rokos H, Peters EMJ, Wood JM, Schallreuter KU. Oxidative Stress Via Hydrogen Peroxide Affects Proopiomelanocortin Peptides Directly in the Epidermis of Patients with Vitiligo. J Invest Dermatol. 2007 Feb;127(2):411–20.

Kang P, Zhang W, Chen X, Yi X, Song P, Chang Y, et al. TRPM2 mediates mitochondria-dependent apoptosis of melanocytes under oxidative stress. Free Radic Biol Med. 2018 Oct;126:259–68.

Li S, Zhu G, Yang Y, Jian Z, Guo S, Dai W, et al. Oxidative stress drives CD8 + T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. 2017 Jul;140(1):177-189.e9.

Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I, Bibeyran A, et al. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin: CCN3 and DDR1 in vitiligo. Exp Dermatol. 2012 Jun;21(6):411–6.

Sanad EM, El-Fallah AA, Al-Doori AR, Salem RM. Serum Zinc and Inflammatory Cytokines in Vitiligo. 2020;13(12):5.

Wagner RY, Luciani F, Cario-André M, Rubod A, Petit V, Benzekri L, et al. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo. J Invest Dermatol. 2015 Jul;135(7):1810–9.

Tulic MK. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. :13.

Khaitan BK, Sindhuja T. Autoimmunity in vitiligo: Therapeutic implications and opportunities. Autoimmun Rev. 2022 Jan;21(1):102932.

Wang XX, Wang QQ, Wu JQ, Jiang M, Chen L, Zhang CF, et al. Increased expression of CXCR 3 and its ligands in patients with vitiligo and CXCL 10 as a potential clinical marker for vitiligo. Br J Dermatol. 2016 Jun;174(6):1318–26.

Kemp EH, Emhemad S, Akhtar S, Watson PF, Gawkrodger DJ, Weetman AP. Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo: Tyrosine hydroxylase antibodies in vitiligo. Exp Dermatol. 2011 Jan;20(1):35–40.

Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev. 2021 Mar;41(2):1138–66.

Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013 May;13(5):349–61.

van den Boorn JG, Konijnenberg D, Dellemijn TAM, Wietze van der Veen JP, Bos JD, Melief CJM, et al. Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients. J Invest Dermatol. 2009 Sep;129(9):2220–32.

Bertolotti A, Boniface K, Vergier B, Mossalayi D, Taieb A, Ezzedine K, et al. Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res. 2014 May;27(3):398–407.

Wańkowicz-Kalińska A, van den Wijngaard RMJGJ, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, et al. Immunopolarization of CD4+ and CD8+ T Cells to Type-1–Like is Associated with Melanocyte Loss in Human Vitiligo. Lab Invest. 2003 May;83(5):683–95.

Qi F, Liu F, Gao L. Janus Kinase Inhibitors in the Treatment of Vitiligo: A Review. Front Immunol. 2021 Nov 18;12:790125.

Dwivedi M, Helen Kemp E, Laddha NC, Mansuri MS, Weetman AP, Begum R. Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics. Autoimmun Rev. 2015 Jan;14(1):49–56.

Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global Activation of CD8+ Cytotoxic T Lymphocytes Correlates with an Impairment in Regulatory T Cells in Patients with Generalized Vitiligo. Unutmaz D, editor. PLoS ONE. 2012 May 23;7(5):e37513.

Ben Ahmed M, Zaraa I, Rekik R, Elbeldi-Ferchiou A, Kourda N, Belhadj Hmida N, et al. Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo: Regulatory T lymphocytes in vitiligo. Pigment Cell Melanoma Res. 2012 Jan;25(1):99–109.

Wang Y, Li S, Li C. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity. Med Sci Monit Int Med J Exp Clin Res. 2019 Feb 6;25:1017–23.

Riding RL, Harris JE. The Role of Memory CD8 + T Cells in Vitiligo. J Immunol. 2019 Jul 1;203(1):11–9.

Seneschal J, Harris JE, Le Poole IC, Passeron T, Speeckaert R, Boniface K. Editorial: Immunology of Vitiligo. Front Immunol. 2021 Jun 24;12:711080.

Rashighi M, Harris JE. Vitiligo pathogenesis and emerging treatments. Dermatol Clin. 2017 Apr;35(2):257–65.

Elbuluk N, Ezzedine K. Quality of Life, Burden of Disease, Co-morbidities, and Systemic Effects in Vitiligo Patients. Dermatol Clin. 2017 Apr;35(2):117–28.

How to Cite

1.
Beuth Ruiz S, Velasquez-Lopera MM. Vitiligo and its multifactorial autoimmune pathogenesis: facing the present and future. rev. asoc. colomb. dermatol. cir. dematol. [Internet]. 2024 Jan. 19 [cited 2024 Jul. 22];31(3):179-88. Available from: https://revista.asocolderma.org.co/index.php/asocolderma/article/view/1748

Downloads

Download data is not yet available.

Published

2024-01-19

How to Cite

1.
Beuth Ruiz S, Velasquez-Lopera MM. Vitiligo and its multifactorial autoimmune pathogenesis: facing the present and future. rev. asoc. colomb. dermatol. cir. dematol. [Internet]. 2024 Jan. 19 [cited 2024 Jul. 22];31(3):179-88. Available from: https://revista.asocolderma.org.co/index.php/asocolderma/article/view/1748

Issue

Section

Review Article
Crossref Cited-by logo
QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Some similar items: