Vías inflamatorias en la fisiopatología del acné

  • Beatriz Orozco
  • Margarita María Velásquez
  • Esperanza Meléndez
  • Juan Guillermo Pabón
  • Adriana Motta
  • Liliana Anaya
  • Juan Jaime Atuesta
  • Luis Fernando Balcázar
  • María Isabel Barona
  • Margarita María Becerra
  • Florinda Busi
  • Martha Helena Campo
  • Adriana Cruz
  • Milena Danies
  • Teresita Diazgranados
  • Diego Espinosa
  • Claudia Escandón
  • Adriana Gaita
  • Gonzalo Eduardo García
  • Martha Lucía González
  • Bernardo Huyke
  • Sol Beatriz Jiménez
  • Juana Gabriela López
  • María Cristina Lotero
  • Óscar Medina
  • Carlos Montealegre
  • Mauricio Ortiz
  • Johanna Parra
  • Lina Quiroz
  • Ramiro Quintero
  • Verónica Ranking
  • Jaime Rengifo6
  • Mary Ann Robledo
  • Ricardo Rueda
  • José Tovar
  • Claudia Uribe
  • Jessica Vallejo
  • Gloria Velásquez
  • Natalia Velásquez
Palabras clave: acné, inflamación, fisiopatología, inmunología, TLR-2

Resumen

El acné vulgar es una enfermedad inflamatoria multifactorial que compromete la unidad pilosebácea y afecta el 80 % de la población adolescente. Se han propuesto diversos mecanismos en su patogénesis, entre los cuales se menciona, especialmente, el inmunológico posiblemente asociado al sobrecrecimiento bacteriano. En este artículo se revisan los avances más recientes de la fisiopatología e inmunología, la relación con Propionibacterium acnes y las posibles implicaciones terapéuticas.

Biografía del autor/a

Beatriz Orozco

Universidad Pontificia Bolivariana, Medellín, Colombia

Margarita María Velásquez

Universidad de Antioquia, Medellín, Colombia

Esperanza Meléndez

Universidad Libre, Barranquilla, Colombia

María Isabel Barona

Centro Médico Imbanaco, Cali, Colombia

Diego Espinosa

CES, Medellín, Colombia

Sol Beatriz Jiménez

CES, Medellín, Colombia

María Cristina Lotero

CES, Medellín, Colombia

Carlos Montealegre

Universidad de Antioquia, Medellín, Colombia

Lina Quiroz

CES, Medellín, Colombia

Jaime Rengifo6

Clínica Las Américas, Medellín, Colombia

Mary Ann Robledo

Universidad de Antioquia, Medellín, Colombia

Claudia Uribe

CES, Medellín, Colombia

Gloria Velásquez

CES, Medellín, Colombia

Natalia Velásquez

CES, Medellín, Colombia

Citas

1. Graham GM, Farrar MD, Cruse-Sawyer JE, Holland KT, Ingham E. Proinflammatory cytokine production by human keratinocytes stimulated with Propionibacterium acnes and P. acnes GroEL. Br J Dermatol. 2004;150:421-8.
2. Vowels BR, Yang S, Leyden JJ. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: Implications for chronic inflammatory acne. Infect Immun. 1995;63:3158-65.
3. Choi JY, Piao MS, Lee JB, Oh JS, Kim IG, Lee SC. Propionibacterium acnes stimulates pro-matrix metalloproteinase-2 expression through tumor necrosis factor-alpha in human dermal fibroblasts. J Invest Dermatol. 2008;128:846-54.
4. Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR. Tetracyclines inhibit connective tissue breakdown: New therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med. 1991;2:297-321.
5. Monk E, Shalita A, Siegel DM. Clinical applications of non-antimicrobial tetracyclines in dermatology. Pharmacol Res. 2011;63:130-45.
6. Sato T, Kurihara H, Akimoto N, Noguchi N, Sasatsu M, Ito A. Augmentation of gene expression and production of promatrix metalloproteinase 2 by Propionibacterium acnes-derived factors in hamster sebocytes and dermal fibroblasts: A possible mechanism for acne scarring. Biol Pharm Bull. 2011;34:295-9.
7. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol. 2003;17:663-9.
8. Sarici G, Cinar S, Armutcu F, Altinyazar C, Koca R, Tekin NS. Oxidative stress in acne vulgaris. J Eur Acad Dermatol Venereol. 2010;24:763-7.
9. Krishna S. Innate immunity in the pathogenesis of acne vulgaris. In: Shalita AR, del Rosso JQ, Webster GF, editors. Acne vulgaris. London, UK: American Acne & Rosacea Society and Informa Health Care; 2011. p. 12,3.
10. Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: Facts and controversies. Clin Dermatol. 2010;28:2-7.
11. Evans CA, Smith WM, Johnston EA, Giblett ER. Bacterial flora of the normal human skin. J Invest Dermatol. 1950;15:305-24.
12. Leyden JJ, McGinley KJ, Mills OH, Kligman AM. Propionibacterium levels in patients with and without acne vulgaris. J Invest Dermatol. 1975;65:382-4.
13. Leeming JP, Ingham E, Cunliffe WJ. The microbial content and complement C3 cleaving capacity of comedones in acne vulgaris. Acta Derm Venereol. 1988;68:468-73.
14. Bruggemann H. Insights in the pathogenic potential of Propionibacterium acnes from its complete genome. Semin Cutan Med Surg. 2005;24:67-72.
15. McDowell A, Valanne S, Ramage G, Tunney MM, Glenn JV, McLorinan GC, et al. Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol. 2005;43:326-34.
16. Bruggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, et al. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science. 2004;305:671-3.
17. Farrar MD, Howson KM, Bojar RA, West D, Towler JC, Parry J, et al. Genome sequence and analysis of a Propionibacterium acnes bacteriophage. J Bacteriol. 2007;189:4161-7.
18. Lood R, Morgelin M, Holmberg A, Rasmussen M, Collin M. Inducible Siphoviruses in superficial and deep tissue isolates of Propionibacterium acnes. BMC Microbiol. 2008;8:139.
19. Lood R, Collin M. Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics. 2011;12:198.
20. Szabo K, Kemeny L. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum Immunol. 2011;72:766-73.
21. Koreck A, Pivarcsi A, Dobozy A, Kemeny L. The role of innate immunity in the pathogenesis of acne. Dermatology. 2003;206:96-105.
22. Kim J. Review of the innate immune response in acne vulgaris: Activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology. 2005;211:193-8.
23. Farrar MD, Ingham E. Acne: inflammation. Clin Dermatol. 2004;22:380-4.
24. Zouboulis CC. Propionibacterium acnes and sebaceous lipogenesis: A love-hate relationship? J Invest Dermatol. 2009;129:2093-6.
25. Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18:821-32.
26. Grange PA, Weill B, Dupin N, Batteux F. Does inflammatory acne result from imbalance in the keratinocyte innate immune response? Microbes Infect. 2010;12:1085-90.
27. Liu PT, Phan J, Tang D, Kanchanapoomi M, Hall B, Krutzik SR, et al. CD209(+) macrophages mediate host defense against Propionibacterium acnes. J Immunol. 2008;180:4919-23.
28. Gowland G, Ward RM, Holland KT, Cunliffe WJ. Cellular immunity to P. acnes in the normal population and patients with acne vulgaris. Br J Dermatol. 1978;99:43-7.
29. Kersey P, Sussman M, Dahl M. Delayed skin test reactivity to Propionibacterium acnes correlates with severity of inflammation in acne vulgaris. Br J Dermatol. 1980;103:651-5.
30. Gallo RL, Nakatsuji T. Microbial symbiosis with the innate immune defense system of the skin. J Invest Dermatol. 2011;131:1974-80.
31. Nakatsuji T, Kao MC, Zhang L, Zouboulis CC, Gallo RL, Huang CM. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J Invest Dermatol. 2010;130:985-94.
32. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, McDowell A, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8:2195-205.
33. Bojar RA, Holland KT. Acne and Propionibacterium acnes. Clin Dermatol. 2004;22:375-9.
34. Chronnell CM, Ghali LR, Ali RS, Quinn AG, Holland DB, Bull JJ, et al. Human beta defensin-1 and -2 expression in human pilosebaceous units: Upregulation in acne vulgaris lesions. J Invest Dermatol. 2001;117:1120-5.
35. Nagy I, Pivarcsi A, Koreck A, Szell M, Urban E, Kemeny L. Distinct strains of Propionibacterium acnes induce selective human betadefensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124:931-8.
36. Lee DY, Yamasaki K, Rudsil J, Zouboulis CC, Park GT, Yang JM, et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill Propionibacterium acnes. J Invest Dermatol. 2008;128:1863-6.
37. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol. 2005;6:57-64.
38. Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A. 1997;94:14614-9.
39. Williams MJ, Rodriguez A, Kimbrell DA, Eldon ED. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 1997;16:6120-30.
40. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535-41.
41. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499-511.
42. McInturff JE, Modlin RL, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol. 2005;125:1-8.
43. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801.
44. Webster GF, Leyden JJ, Tsai CC, Baehni P, McArthur WP. Polymorphonuclear leukocyte lysosomal release in response to Propionibacterium acnes in vitro and its enhancement by sera from inflammatory acne patients. J Invest Dermatol. 1980;74:398-401.
45. Williamson E, Garside P, Bradley JA, Mowat AM. IL-12 is a central mediator of acute graft-versus-host disease in mice. J Immunol. 1996;157:689-99.
46. Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL. Increased interleukin 12 production in progressive multiple sclerosis: Induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci U S A. 1997;94:599-603.
47. Jugeau S, Tenaud I, Knol AC, Jarrousse V, Quereux G, Khammari A, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol. 2005;153:1105-13.
48. Makrantonaki E, Ganceviciene R, Zouboulis C. An update on the role of the sebaceous gland in the pathogenesis of acne. Dermatoendocrinol. 2011;3:41-9.
49. Jeremy AH, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol. 2003;121:20-7.
50. Bellew S, Thiboutot D, Del Rosso JQ. Pathogenesis of acne vulgaris: What's new, what's interesting and what may be clinically relevant. J Drugs Dermatol. 2011;10:582-5.
51. Holland DB, Jeremy AH. The role of inflammation in the pathogenesis of acne and acne scarring. Semin Cutan Med Surg. 2005;24:79-83.
52. Taylor M, Gonzalez M, Porter R. Pathways to inflammation: Acne pathophysiology. Eur J Dermatol. 2011;21:323-33.
53. Tsuda K, Yamanaka K, Linan W, Miyahara Y, Akeda T, Nakanishi T, et al. Intratumoral injection of Propionibacterium acnes suppresses malignant melanoma by enhancing Th1 immune responses. PLoS One. 2011;6:e29020.
54. Kitagawa H, Yamanaka K, Kakeda M, Inada H, Imai Y, Gabazza EC, et al. Propionibacterium acnes vaccination induces regulatory T cells and Th1 immune responses and improves mouse atopic dermatitis. Exp Dermatol. 2011;20:157-8.
55. Knop J, Ollefs K, Frosch PJ. Anti-P. acnes antibody in comedonal extracts. J Invest Dermatol. 1983;80:9-12.
56. Holland DB, Jeremy AH, Roberts SG, Seukeran DC, Layton AM, Cunliffe WJ. Inflammation in acne scarring: A comparison of the responses in lesions from patients prone and not prone to scar. Br J Dermatol. 2004;150:72-81.
57. Harper JC, Thiboutot DM. Pathogenesis of acne: Recent research advances. Adv Dermatol. 2003;19:1-10.
58. Nakatsuji T, Liu YT, Huang CP, Zoubouis CC, Gallo RL, Huang CM. Antibodies elicited by inactivated Propionibacterium acnesbased vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: Relevance to therapy for acne vulgaris. J Invest Dermatol. 2008;128:2451-7.
59. Nakatsuji T, Liu YT, Huang CP, Zouboulis CC, Gallo RL, Huang CM. Vaccination targeting a surface sialidase of P. acnes: Implication for new treatment of acne vulgaris. PLoS One. 2008;3:e1551.
60. Ianosi S, Stoicescu I, Ianosi G, Neagoe D, Georgescu CV. The study of CD20 and CD45.Ro antibodies in the inflammatory infiltrate involved in acne and seborrheic dermatitis. Rom J Morphol Embryol. 2007;48:285-9.
61. Burkhart CG, Burkhart CN, Lehmann PF. Acne: A review of immunologic and microbiologic factors. Postgrad Med J. 1999;75:328-31.
62. Szabo K, Tax G, Kis K, Szegedi K, Teodorescu-Brinzeu DG, Dioszegi C, et al. Interleukin-1A +4845(G>T) polymorphism is a factor predisposing to acne vulgaris. Tissue Antigens. 2010;76:411-5.
63. Caillon F, O'Connell M, Eady EA, Jenkins GR, Cove JH, Layton AM, et al. Interleukin-10 secretion from CD14+ peripheral blood mononuclear cells is downregulated in patients with acne vulgaris. Br J Dermatol. 2010;162:296-303.
64. Tian LM, Xie HF, Yang T, Hu YH, Li J, Wang WZ. Association study of tumor necrosis factor receptor type 2 M196R and toll-like receptor 2 Arg753Gln polymorphisms with acne vulgaris in a Chinese Han ethnic group. Dermatology. 2010;221:276-84.
65. Sugisaki H, Yamanaka K, Kakeda M, Kitagawa H, Tanaka K, Watanabe K, et al. Increased interferon-gamma, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: Host response but not bacterial species is the determinant factor of the disease. J Dermatol Sci. 2009;55:47-52.
66. Tenaud I, Khammari A, Dreno B. In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol. 2007;16:500-6.
67. Abd El All HS, Shoukry NS, El Maged RA, Ayada MM. Immunohistochemical expression of interleukin 8 in skin biopsies from patients with inflammatory acne vulgaris. Diagn Pathol. 2007;2:4.
68. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562-73.
69. Papakonstantinou E, Aletras AJ, Glass E, Tsogas P, Dionyssopoulos A, Adjaye J, et al. Matrix metalloproteinases of epithelial origin in facial sebum of patients with acne and their regulation by isotretinoin. J Invest Dermatol. 2005;125:673-84.
70. Jalian HR, Liu PT, Kanchanapoomi M, Phan JN, Legaspi AJ, Kim J. All-trans retinoic acid shifts Propionibacterium acnes-induced matrix degradation expression profile toward matrix preservation in human monocytes. J Invest Dermatol. 2008;128:2777-82.
71. Trivedi NR, Cong Z, Nelson AM, Albert AJ, Rosamilia LL, Sivarajah S, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002-9.
72. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645-50.
73. Kuenzli S, Saurat JH. Peroxisome proliferator-activated receptors in cutaneous biology. Br J Dermatol. 2003;149:229-36.
74. Smith KJ, Dipreta E, Skelton H. Peroxisomes in dermatology. Part I. J Cutan Med Surg. 2001;5:231-43.
75. Michalik L, Wahli W. Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta. 2007;1771:991-8.
76. Sertznig P, Reichrath J. Peroxisome proliferator-activated receptors (PPARs) in dermatology: Challenge and promise. Dermatoendocrinol. 2011;3:130-5.
77. Schuster M, Zouboulis CC, Ochsendorf F, Muller J, Thaci D, Bernd A, et al. Peroxisome proliferator-activated receptor activators protect sebocytes from apoptosis: A new treatment modality for acne? Br J Dermatol. 2011;164:182-6.
78. Rosenfield RL, Kentsis A, Deplewski D, Ciletti N. Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors. J Invest Dermatol. 1999;112:226-32.
79. Elmongy NN, Shaker O. Expression of peroxisome proliferator activator receptor beta/delta (PPARbeta/delta) in acne vulgaris. Eur J Dermatol. 2012;22:42-5.
80. Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol. 2001;169:453-9.
81. Mastrofrancesco A, Kokot A, Eberle A, Gibbons NC, Schallreuter KU, Strozyk E, et al. KdPT, a tripeptide derivative of alpha-melanocyte-stimulating hormone, suppresses IL-1 beta-mediated cytokine expression and signaling in human sebocytes. J Immunol. 2010;185:1903-11.
82. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPAR alpha-leukotriene B4 pathway to inflammation control. Nature. 1996;384:39-43.
83. McInturff JE, Wang SJ, Machleidt T, Lin TR, Oren A, Hertz CJ, et al. Granulysin-derived peptides demonstrate antimicrobial and antiinflammatory effects against Propionibacterium acnes. J Invest Dermatol. 2005;125:256-63.
84. Wiesner J, Vilcinskas A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence. 2010;1:440-64.
85. Valins W, Amini S, Berman B. The expression of toll-like receptors in dermatological diseases and the therapeutic effect of current and newer topical toll-like receptor modulators. J Clin Aesthet Dermatol. 2010;3:20-9.
86. Vega-Diaz JA, Michel S. Regulation of human monocyte toll-like receptor 2 (TLR-2) expression by adapalene. J Eur Acad Dermatol Venereol. 2002;16:123-4.
87. Liu PT, Krutzik SR, Kim J, Modlin RL. Cutting edge: All-trans retinoic acid down-regulates TLR2 expression and function. J Immunol. 2005;174:2467-70.
88. Grange PA, Raingeaud J, Calvez V, Dupin N. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways. J Dermatol Sci. 2009;56:106-12.
89. Marcinkiewicz J. Taurine bromamine: A new therapeutic option in inflammatory skin diseases. Pol Arch Med Wewn. 2009;119:673-6.
90. Sardana K, Garg VK. An observational study of methioninebound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol Ther. 2010;23:411-8.
91. Lee YJ, Choi HJ, Kang TW, Kim HO, Chung MJ, Park YM. CBT-SL5, a bacteriocin from Enterococcus faecalis, suppresses the expression of interleukin-8 induced by Propionibacterium acnes in cultured human keratinocytes. J Microbiol Biotechnol. 2008;18:1308-16.
92. Gougerot A MA-M, Lefeuvre L. Dermatoses inflammatoires et Tolllike récepteurs (TLR). Nouv Dermatol. 2009;28:213-9.
93. Shibata M, Katsuyama M, Onodera T, Ehama R, Hosoi J, Tagami H. Glucocorticoids enhance Toll-like receptor 2 expression in human keratinocytes stimulated with Propionibacterium acnes or proinflammatory cytokines. J Invest Dermatol. 2009;129:375-82.
Cómo citar
1.
Orozco B, Velásquez MM, Meléndez E, Pabón JG, Motta A, Anaya L, Atuesta JJ, Balcázar LF, Barona MI, Becerra MM, Busi F, Campo MH, Cruz A, Danies M, Diazgranados T, Espinosa D, Escandón C, Gaita A, García GE, González ML, Huyke B, Jiménez SB, López JG, Lotero MC, Medina Óscar, Montealegre C, Ortiz M, Parra J, Quiroz L, Quintero R, Ranking V, Rengifo6J, Robledo MA, Rueda R, Tovar J, Uribe C, Vallejo J, Velásquez G, Velásquez N. Vías inflamatorias en la fisiopatología del acné. rev. asoc. colomb. dermatol. cir. dematol. [Internet]. 1 de octubre de 2013 [citado 20 de septiembre de 2019];21(4):339-5. Disponible en: https://revista.asocolderma.org.co/index.php/asocolderma/article/view/248

Descargas

La descarga de datos todavía no está disponible.
Publicado
2013-10-01
Sección
Artículo de revisión

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 8 9 10 > >>